Implementation of the Bioresource Potential of Some Varieties of Medicago varia Mart. in Various Ecotopes of the South of the Central Russian Upland

Authors

  • Zh.A. Borodaeva Belgorod National Research University
  • V.I. Cherniavskih Belgorod State University

DOI:

https://doi.org/10.18413/2658-3453-2020-2-3-242-249

Keywords:

alfalfa, phytomass, multifolia, mf-mutation

Abstract

In the period 2016–2018. in the ecotopes of the South of the Central Russian Upland, the productivity of various populations of alfalfa (M. varia) was studied. Studied breeding material created on the basis of forms with high expression of mf-mutation in comparison with the initial population of varieties from which the selection of mutant forms was carried out. Populations with high expression of the mf mutation showed their potential for high productivity of aboveground phytomass only under conditions of high soil fertility and optimal ecotopic conditions, most favorable for the growth and development of M. varia. When sown in unfavorable conditions, they reduced their productivity in comparison with the original breeding populations. Under the conditions of ecotopes of field crop rotations with chernozem soil, the productivity of the aboveground phytomass of variety populations with high expression of the mf mutation was significantly higher than that of the original varieties. Selection samples with high expression of the mf mutation K-1/10 mf and B-86/3 mf in the ecotope of field crop rotation with typical heavy loamy chernozem provided the aboveground phytomass of 1209.7 g/ m2 and 1175.8 g/ m2, respectively. In the conditions of the meadow ecotope, on the contrary, they were inferior to the original varieties by 50 – 65 g/ m2. In the ecotope conditions with leached sandy chernozem, no significant differences were found between them.

Downloads

Download data is not yet available.

References

Бородаева Ж.А. 2019. Изучение морфометрических показателей семенной продуктивности Medicago varia Mart. с mf-мутацией в различных экотопах юга Среднерусской возвышенности. Полевой журнал биолога, 1 (3): 123–130.

Думачева Е.В., Чернявских В.И. 2014. Влияние способа возделывания люцерны гибридной на семенную продуктивность потомства первого поколения на карбонатных почвах ЦЧР. Кормопроизводство, 2: 23–26.

Доспехов Б.А. 1985. Методика полевого опыта: (с основами статистической обработки результатов исследований). М., Колос, 352.

Косолапов В.М., Пилипко С.В., Костенко С.И. 2015. Новые сорта кормовых культур – залог успешного развития кормопроизводства. Достижения науки и техники АПК, 4: 35–37.

Методика опытов на сенокосах и пастбищах. 1973. М., ВНИИК им. В.Р. Вильямса, 229 с.

Писковацкий Ю.М. 2012. Люцерна для многовидовых агрофитоценозов. Кормопроизводство, 11: 25–26.

Чернявских В.И. 2009. Эффективность возделывания бобовых и злаковых трав на склоновых землях юго-запада ЦЧЗ. Земледелие, 6: 18–19.

Чернявских В.И. 2016. Рекуррентная селекция как основа повышения продуктивности люцерны в Центрально-Черноземном регионе. Кормопроизводство, 12: 40–44.

Bissinger R., Modicano P., Alzoubi K., Honisch S., Abed M., Lang F., Faggio C. 2014. Effect of saponin on erythrocytes. International Journal of Hematology, 100 (1): 51–59.

Chen Y., Liu Y., Xu J., Xie Y., Zheng Q., Yue P., Yang M. 2017. A natural triterpenoid saponin as multifunctional stabilizer for drug nanosuspension powder. AAPS PharmSciTech, 18 (7): 2744–2753.

Cherniavskih V.I., Dumacheva E.V., Lisetskii F.N., Tsugkiev B.G., Gagieva L.Ch. 2019 а. Floral variety of Fabaceae Lindl. family in gully ecosystems in the south-west of the Central Russian Upland. Bioscience Biotechnology Research Communications, 12 (2): 203–210.

Cherniavskih V.I., Dumacheva E.V., Borodaeva Z.A., Gorbacheva A.A., Horolskaya E.N., Kotsareva N.V., Korolkova S.V., Gagieva L.C. 2019 b. Features of intra population variability of Medicago varia Mart. with the expressed mf-mutation on a complex qualitative characteristic. EurAsian Journal of BioSciences, 13 (2): 733–737.

Dumacheva E.V., Cherniavskih V.I., Gorbacheva A.A., Vorobyova O.V., Borodaeva Z.A., Bespalova E.N. Ermakova L.R. 2018. Biological resources of the Fabaceae family in the cretaceous south of Russia as a source of starting material for drought-resistance selection. International Journal of Green Pharmacy, 12 (2): 354.

Dzyubenko N.I. 2013. Genetic Resources for Plant Breeding: Past, Present and Future. In: International Plant Breeding Congress (Antalya, Turkey, 10–14 November 2013). Plant Breeders Sub-Union of Turkey (BİSAB), Dr Vehbi ESER: 77.

Meng Kong, Jing Kang, Cheng-Long Han, Yan-Jie Gu, Kadambot H.M Siddique, Feng-Min Li. 2020. Nitrogen, Phosphorus, and Potassium Resorption Responses of Alfalfa to Increasing Soil Water and P Availability. Semi-Arid Environment Agronomy, 10 (2): 310.

Notov A.А., Dementieva S.M., Meysurova A.F. 2013. Methodical Aspects Of Comprehensive Biomonitoring. European Researcher, 11-2 (63): 2688–2699.

Odorizzi A., Mamani E.M.C., Sipowicz P., Julier B., Gieco J., Basigalup D. 2015. Effect of phenotypic recurrent selection on genetic diversity of non-dormant multifoliolate lucerne (Medicago sativa L.) populations. Crop and Pasture Science, 66 (11): 1190–1196.

Odorizzi A.S., Arolfo V., Basigalup D. 2018. A very non-dormant alfalfa (Medicago sativa L.) with high multifoliolate expression. 27 IN Proceedings. Second World Alfalfa Congress (Cordoba, Argentina, 11–14 November, 2018). Instituto Nacional de Tecnología Agropecuaria (INTA), http://www.worldalfalfacongress.org/

Petkova D., Panayotova G. 2007. Comparative study of trifoliolate and multifoliolate alfalfa (Medicago sativa L.) synthetic populations. Bulgarian Journal of Agricultural Science, 13: 221–224.

Petkova D. 2010. Multifoliate Alfalfa line with 23-24 leaves on a leaf stalk. Journal of Crop and Weed, 6 (1): 1–5.

Popescu S., Boldura O.-M., Ciulca S., 2016. Evaluation of the genetic variability correlated with multileaflet trait in alfalfa. Agro Life Scientific Journal, 5 (2): 125–130.

Roshydromet, Russian Federation. 2014. The second evaluation report on climate changes and their effects on the territory of the Russian Federation. Moscow, The Federal service for hydrometeorology and environmental monitoring Publ. 58. URL: http://downloads.igce.ru/publications/OD_2_2014/v2014/pdf/resume_ob_eng.pdf / (available at 28 February 2019)

Shao J. 2018. Ideal Alfalfa Variety – Discussion on the Breeding Direction of Alfalfa in China. In: Second World Alfalfa Congress (Cordoba, Argentina, 11–14 November, 2018). Instituto Nacional de Tecnología Agropecuaria (INTA): 129.

Sheaffer C.C., McCaslin M., Volenec J.J., Cherney J.H., Johnson K.D., Woodward W.T., Viands D.R. 1995. Multifoliolate Leaf Expression (Leaves with Greater Than 3 Leaflets Leaf): 2.

Shi Shangli, Nan Lili, Smith Kevin F. 2017. The Current Status, Problems, and Prospects of Alfalfa (Medicago sativa L.) Breeding in China. Agronomy, 7 (1). https://doi.org/10.3390/agronomy7010001

Streltsina S. A., Zhukova M. A., Chachko E. V., Dzyubenko N.I. and Konarev A.V. 2001. Comparative analysis of intra-population variability of alfalfa (Medicago sativa L.) and Eastern goat (Galega orientalis L.) by biochemical quality traits. Agricultural biology, 5: 37–47.


##article.numberofviews## 95

##submission.share##

Published

2020-09-30

How to Cite

Borodaeva, Z., & Cherniavskih, V. (2020). Implementation of the Bioresource Potential of Some Varieties of Medicago varia Mart. in Various Ecotopes of the South of the Central Russian Upland. Field Biologist Journal, 2(3), 242-249. https://doi.org/10.18413/2658-3453-2020-2-3-242-249

Issue

Section

Biological resources